Reports and manuscripts
with Quarto

Whatis quarto?

o Open-source document format and computational
notebook system

e |Nntegrates text, code, and outout

e Can create multiple different types of products
(documents, slides, websites, books)

Why not R Markdown?

Only because quarto is newer and more featured!

e Anything you already know how to do in R Markdown
you can do in quarto, and more!

o All of these slides, website, etc. are all made in quarto.

e |[f you know and love R Markdown, by all means keep
using it!

Quarto workflow

1. Create a Quarto document

2. Write code

3. Write text
4. Repeat 2-3 in whatever order you want

5. Render repeatedly as you go

How does it work?

e You text iIn markdown and code in R

e knitr processes the code chunks, executes the R code,
and inserts the code outputs (e.g., plots, tables) back
INnto the markdown document

e pandoc transforms the markdown document into
various output formats

Text and code...

My header
Some text
Some *italic text*

Some **bold text**

1
2
3
4
5
6
7
8

- Eggs
- Milk

- {r}
X <- 3

< >

...lbecomes...
My title
Some text

Some /talic text

Some bold text

¢ Eggs
e Milk

Ifyou prefer, you can use the visual editor
My title
Some text
Some Jjtalic text

Some bold text

ir} ¢
X <- 3
X

R chunks

Everything within the chunks has to be valid R!

[1]1 7

Chunks run in order, continuously, like a single script

YAML

At the top of your Quarto document, a header written in
yam/ describes options for the document

title: "My document”

author: Louisa Smith
format: html

There are a ton of possible options, but importantly, this
determines the document output

10

https://quarto.org/docs/output-formats/all-formats.ntml

11

https://quarto.org/docs/output-formats/all-formats.html

Exercises

We're going to focus on html output

o |t's easy to transition to Word (format: docx) but it's not
as good for constant re-rendering

e You need a LaTeX installation for pdf (format: pdf)

s | recommend {tinytex;

12

https://quarto.org/docs/reference/formats/docx.html
https://quarto.org/docs/reference/formats/pdf.html
https://yihui.org/tinytex/

Exercises

You can choose whether you want to have chunk output
show up within the document (vs. just the console) when
you are running Quarto (and RMarkdown) documents

INnteractively
Tools > Global options

R Markdown
v Show document outline by default
v Soft-wrap R Markdown files

Show in document outline: | Sections and Named Chunks v

Show output preview in: | Viewer Pane v

Show output inline for all R Markdown documents

Show equation and image previews: | In a popup v

Evaluate chunks in directory: | Project v

13

Exercises

Open up your epi590r-2023-in-class R project!
File > New File > Quarto Document

New Quarto Document

| Document Title: My document

;;f Presentation Author: Louisa Smith|

R Interactive
® HTML

Recommended format for authoring (you can switch to
PDF or Word output anytime)

O PDF

PDF output requires a LaTeX installation (e.g.
https://yihui.org/tinytex/)

O word

Previewing Word documents requires an installation of
MS Word (or Libre/Open Office on Linux)

Engine: Knitr v

Editor: Use visual markdown editor (?

?) Learn more about Quarto

Create Empty Document Create Cancel

Exercises

e Try toggling between Source and Visual views
e Toggle on and off the Outline
e Click Render and look at the output

| my-document.qmd — |
Render on Save =, Render - W -=*Run - | G-~
Source Visual Outline
IS - - - Quarto

2 title: "My document" Running Gode

3 author: "Louisa Smith"
4 format: html

5A _—

6

/7~ ## Quarto

8

9 Quarto enables you to weave together

6:1 (Top Level) = Quarto =
15

Quarto options

Chunk options

INn your Quarto document, you had a chunk:

- {r}

#| echo: false

2 * 2

NN N

#| echo: false tells knitr not to show the code within
that chunk

In RMarkdown, you would have written this {r, echo = FALSE}. You can still do that
with Quarto, but it's generally easier to read, particularly for long options (like

Chunk options

Some of the ones | find myself using most often:

e #| eval: false: Don't evaluate this chunk! Really helpful

If you're trying to isolate an error, or have a chunk that
takes a long time

e #| error: true: Render this even ifthe chunk causes an
error

e #| cache: true:Store the results of this chunk so that it
doesn't need to re-run every time, as long as there are
Nno changes

e #| warning: false: Don't print warnings

o #| message: false: Don't print messages

Document options

You can tell the entire document not to evaluate or print
code (so just include the text!) at the top:

title: "My document”
author: Louisa Smith
format: html
execute:

eval: false

echo: false

1
2
3
4
5
6
7
8

Careful! YAML is really picky about spacing.

Document options

There are for the document

e For example, you can choose a

format:
html:

theme: yeti

e Remember the pickiness: when you have a format
option, html: moves to a new line and the options are
Indented 2 spaces

https://quarto.org/docs/reference/formats/html.html
https://quarto.org/docs/output-formats/html-themes.html

Exercises

Download the quarto document with some {gtsummary r
tables from yesterday

e Change some options to hide code and output
e Add another code chunk

e Play with themes

e Deal with errors

e Add some text

Quarto tables, figures, ana
Stats

Chunks can produce figures and tables

- A{r}
#| label: tbl-one

#| tbl-cap: "This is a great table"

knitr::kable(mtcars)

Table 1. This is a great table
mpg cyl disp hp drat wt gse
Mazda RX4 210 6 160.0 110 390 2620 16.4

Mazda RX4 21.0 o 1600 110 390 2875 1/0.
Wag

Datsun 710 228 4 1080 93 385 2320 18.6

Hornet 4 214 6 2580 110 308 3215 19.4-
Drive

mpg cyl disp hp drat wt gse

Hornet 187 8 3600 175 315 3440 170
Sportabout

Valiant 181 6 2250 105 276 3460 20.2
Duster 360 143 8 360.0 245 321 3570 15.8:
Merc 240D 244 4 1467 62 369 3190 20.0(
Merc 230 228 4 1408 95 392 3150 22.9(
Merc 280 192 6 1676 123 392 3440 18.3(
Merc 280C 178 6 1676 123 392 3440 18.9(
Merc 164 8 2758 180 3.07 4.070 17.4(
450SE

Merc 4505L 173 8 2758 180 3.07 3730 17.6(

mpg cyl disp hp drat wt gse
Merc 152 8 2758 180 3.07 3780 18.0¢
450SLC
Cadillac 104 8 4720 205 293 5250 17.9
Fleetwood
Lincoln 104 8 4600 215 300 5424 178
Continental
Chrysler 147 8 4400 230 323 5345 174
Imperial
Fiat 128 24 4 787 66 408 2200 19.4
Honda 304 4 757 52 493 1615 18.5

Civic

mpg cyl disp hp drat wt gse

Toyota 339 4 711 65 422 1835 19.9(
Corolla

Toyota 215 4 1201 97 370 2465 20.0
Corona

Dodge 155 8 3180 150 276 3520 16.8
Challenger

AMC 152 8 3040 150 315 3435 17.3(
Javelin

Camaro 13.3 8 350.0 245 373 3840 154
728

Pontiac 192 8 4000 175 3.08 3845 170!

Firebird

mpg cyl disp hp drat wt gse
Fiat X1-9 27.3 4 79.0 oo 4.08 1935 18.9¢(
Porsche 26.0 4 120.3 Ol 443 2140 16.7(
914-2
Lotus 30.4 4 O51 13 3.77 1.513 16.9(
Europa
~ord 158 8 3510 264 422 3170 14.5(
Pantera L
~errari Dino 19.77 o 1450 1/5 362 2770 15.5(
Maseratl 15.0 8 301.0 335 354 3570 14.6(
Bora
Volvo 142E 21.4 4 121.0 109 411 2.780 18.6(

Chunks can produce figures or tables

- A{r}
#| label: fig-hist

#| fig-cap: "This is a histogram"

hist(rnorm(100))

NN N

Histogram of rnorm(100)

Frequency

Figure 1. This is a histogram

Cross-referencing

You can then refer to those with @tbl-one and @fig-hist

and the Table and Figure ordering will be correct (and
linked)

@fig-hist contains a histogram and @tbl-one a table.
gets printed as:

Flgure 1 contains a histogram and Table | a table.

INliNne R

Along with just regular text, you can also run R code
within the text:

There were "r 3 + 4~ participants

becomes:

There were 7 participants

INliNne R

This is helpful for reporting statistics, e.g. the sample size:

There were r nrow(nlsy) participants

becomes:

There were 1.2686A{4} participants

INnline stats

You can also create an object in a chunk and then
reference it later in the text

- {r}

total sample <- nrow(nlsy)

NSNS

There were r total sample participants

Inline stats (aside)

| often create a list of stats that | want to report in a
manuscript:

1 stats <- list(n = nrow(data),

2 mean age = mean(data$age))

| can then print these numbers in the text with:

There were "r stats$n participants with a mean age of
"r stats$mean_age .

which turns into:

There were 1123 participants with a mean age of 43.5.

Inline stats from {gtsummary ;

We saw very, very briefly yesterday:

library(gtsummary)
income table <- tbl uvregression(
nlsy,
y = income,
include = c(
sex cat, race eth cat,
eyesight cat, income, age bir
) 1
method = 1m

1
2
3
4
5
6
7
8
9

-
o

inline text(income table, variable = "age bir")

[1] "595 (95% CI 538, 652; p<0.001)"

We pulled a statistic from our univariate table

[fwe're making a table, we probalbly want
to report numbersfrom it

" {r}
#| label: tbl-descr

#| tbl-cap: "Descriptive statistics”

#| output-location: slide
tablel <- tbl summary(
nlsy,
by = sex cat,

include = c(sex cat, race eth cat, region cat,

1
2
3
4
5
6
7
8
9

eyesight cat, glasses, age bir)) |>
add overall(last = TRUE)
tablel

NN S

e e
N B O

[fwe're making a table, we probalbly want

to report numbersfrom it

Characteristic

race_eth_cat
Hispanic
Black
Non-Black, Non-Hispanic

region_cat
Northeast
North Central
South
West
Unknown

eyesight_cat

1

n (%); Median (Q1, Q3)

Male
N =6,403
1

1,000 (16%)
1,613 (25%)

3,790 (59%)

1,296 (21%)

1,488 (24%)

2,251 (36%)

1,253 (20%)
15

Table 2: Descriptive statistics

Female
N = 6,283
1

1,002 (16%)
1,561 (25%)

3,720 (59%)

1,254 (20%)
1,446 (23%)
2,317 (38%)
1,142 (19%)

124

Overall
N =12,686
1

2,002 (16%)
3,174 (25%)

7,510 (59%)

2,550 (20%)
2,934 (24%)
4,568 (37%)
2,395 (19%)
239

Characteristic
Excellent
Very good
Good
Fair
Poor
Unknown

glasses
Unknown

age_bir

Unknown

1

n (%); Median (Q1, Q3)

Male
N = §,403
1,582 (38%)
1,470 (35%)
792 (19%)
267 (6.4%)
47 (1.1%)
2,245
1,566 (38%)
2,241
25 (21, 29)
3,652

Female
N = §,283
1,334 (31%)
1,500 (35%)
1,002 (23%)
365 (8.5%)
85 (2.0%)
1,997
2,328 (54%)
1,995
22 (19, 27)

3,091

Overall
N = 172,686
2,916 (35%)
2,970 (35%)
1,794 (21%)
632 (7.5%)
132 (1.6%)
4,242
3,894 (46%)
4,236
23 (20, 28)
6,743

11

| want to report some stats!

The help file for inline_text () is helpful and tells us that
we can look at tablel$table_body to help figure out what
data to extract.

How about the median (IQR) age of the male participants
at the birth of their first child?

1 inline text(tablel, variable = "age bir", column = "stat

[1] "25 (21, 29)"

12

Formatting

We can add sample sizes for the overall stats on people
who wear glasses using the pattern =argument:

1 inline text(tablel, variable = "glasses", column = "stat (

2 pattern = "{n}/{N} ({p}%)")

3,894/8450 (46%)

13

Formatting for regression statistics

Remove some details:

1 inline text(income table, variable

[1] "595 (95% CI 538, 652; p<0.001)"

1 inline text(income table, variable "age bir",

2 pattern = "{estimate} ({conf.low}, {conf.high

[1] "595 (538, 652)"

14

Better yet...

We can integrate these into the text of our manuscript:

A greater proportion of female (r inline text(tablel,

variable = "glasses", column = "stat 2")) than male
(' r inline text(tablel, variable = "glasses", column =
"stat 1")) participants wore glasses.

Which becomes:;

A greater proportion of female (2,328 (54%)) than male
(1,566 (38%)) participants wore glasses.

15

Readability

Because this can be hard to read, I'd suggest storing those
stats in a chunk before the text:
T {r}

glasses f <- inline text(tablel, variable = "glasses",

column = "stat 2")

glasses m <- inline text(tablel, variable = "glasses",

column = "stat 1")

A greater proportion of female (r glasses f) than male

16

Exercises

Return to the quarto document with the tables.

e Choose a table to label and caption, and then write a
sentence that cross-references it (e.q., Table 1 shows the
descriptive statistics)

e Edit or create a new table that has the median hours of
sleep on weekends in it (in the overall sample).

e Pull that value from a table.

17

Functions

Functionsin R

I've been denoting functions with parentheses: func()

We've seen functions such as:

e mean()

e th1l summary()

e init()

e create_github_token

Functions take arguments and return values

Looking Inside a function

If you want to see the code within a function, you can just
type its name without the parentheses:

1 usethis::create github token

function (scopes = c("repo", "user", "gist", "workflow"), description = "DESCRIBE THE TOKEN'S USE
CASE",
host = NULL)

scopes <- glue collapse(scopes, ",")

host <- get hosturl(host %||% default api url())

url <- glue("{host}/settings/tokens/new?scopes={scopes}&description={description}")
withr::defer(view url(url))

hint <- code hint with host("gitcreds::gitcreds set", host)

message <- c(_~ = "Call {.run {hint}} to register this token in the local Git\n
credential store.")

if (is_linux()) {

message <- c(message, ! = "On Linux, it can be tricky to store credentials
persistently."”,
i = "Read more in the {.href ['Managing Git(Hub) Credentials' article]

(https://usethis.r-lib.org/articles/articles/git-credentials.html)}.")

}

message <- c(message, i = "It is also a great idea to store this token in any\n

password-management software that you use.")

Structure of a function

1 func <- function()

You can name your function like you do any other object

e Just avold names of existing functions

Structure of a function

1 func <- function(argl,

2 arg2 = default val)
3}

What objects/values do you need to make your function
work™?

e YOou can give them default values to use if the user
doesn't specify others

Structure of a function

func <- function(argl,
arg2 = default val) {

Everything else goes within curly braces

o Code in here will essentially look like any other R code,
using any inputs to your functions

Structure of a function

func <- function(argl,
arg2 = default val) {

new val <-

}

e One thing you'll likely want to do is make new objects
along the way

e These aren't saved to your environment (i.e., you won't
see them Iin the upper-right window) when you run the
function

e You can think of them as being stored in a temporary
environment within the function

Structure of a function

func <- function(argl,
arg2 = default val) {

return(new _val)

1
2
3 new val <-
4
5

}

Return something new that the code has produced

e The return() statement is actually optional. If you don't
put it, it will return the last object in the code. When
you're starting out, it's safer to always explicitly write out
what you want to return.

Example: a new function for the mean

Let's say we are not satisfied with the mean () function and
want to write our own.

Here's the general structure we'll start with.

1 new mean <- function() {

2
3}

New mean: arguments

We'll want to take the mean of a vector of numbers.

It will help to make an example of such a vector to think
about what the input might look like, and to test the
function. We'll call it x:

We can add x as an argument to our function:

1 new mean <- function(x)

2
3}

10

New mean: function body

Let's think about how we calculate a mean in math, and
then translate it into code:

— 1
XH:Z

So we need to sum the elements of x together, and then
divide by the number of elements.

11

We can use the functions sum() and length() to help us.

We'll write the code with our test vector first, before
Inserting it into the function:

1l n <- length(x)

2 sum(x) / n

[1] S

12

New mean: function body

Our code seems to be doing what we want, so let's insert
It. To be explicit, I've stored the answer (within the
function) as mean_val, then returned that value.

1 new mean <- function(x) {

n <- length(x)

mean val <- sum(x) / n

return(mean val)

13

Testing afunction

Let's plug in the vector that we created to test It:
1 new mean(x = X)

[1] 5

And then try another one we create on the spot:

1l new mean(x = c(100, 200, 300))

[1] 200

14

Exercises

Create some functions!

Create an R script in your project called functions.R to
save your work!

15

Functions, continued

Adding another argument

Let's say we plan to be using our new_mean() function to
calculate proportions (i.e., the mean of a binary variable).
Sometimes we'll want to report them as as percentage by
multiplying the proportion by 100.

Let's name our new function prop (). We'll use the same
structure as we did with new mean().

1 prop <- function(x) {

2 n <- length(x)

mean val <- sum(Xx)

Testing the code

Now we'll want to test on a vector of 'sand O’s.

1 x <- c(0, 1, 1)

To calculate the proportion and turn it into a percentage,
we'll just multiply the mean by 100.

1 multiplier <- 100

2 multiplier * sum(x) / lengt

[1] 66.66667

Testing the code

We want to give users the option to choose between a
proportion and a percentage. So we'll add an argument
multiplier. When we want to just return the proportion,
we can just set multiplier to bel.

1 multiplier <- 1

2 multiplier * sum(x) / lengt
[1] 0.6666667

1 multiplier <- 100

2 multiplier * sum(x) / lengt

Adding another argument

Ifwe add multiplier as an argument, we can refertoitin
the function bodly.

prop <- function(x, multipli

n <- length(x)
mean val <- multiplier * s

return(mean val)

Adding another argument

Now we can test:

0), multiplier

[1] 0.5

0), multiplier

Making a default argument

Since we don't want users to have to specify multiplier =
1 every time they just want a proportion, we can set it as a

default.

prop <- function(x, multiplier

n <- length(x)

1
2
3 mean val <- multiplier * sum(Xx)
4 return(mean val)

5

}

Now we only need to specify that argument if we want a
percentage.

[1] 0.75

1), multiplier = 100)

Caveats

e This is obviously not the best way to write this function!

e For example, it will still work if x = ¢(123, 593, -192)....
out it certainly won't give you a proportion or a
percentage!

e We could also putmultiplier = any humber,and we'll
just be multiplying the answer by that number - this is
essentially meaningless.

e \We also haven't done any checking to see whether the
user is even entering numbers! We could put in better
error messages so users don't just get an R default error
message If they do something wrong.

1 prop(x = c("blah", "blah", "blah"))

Functions, continued

Writing functions to reduce copy and
paste

If you find yourself doing something over and over, you
can probably write a function for It.

One Is example is the regression tables we created
yesterday.

Let's Imagine we are fitting multiple similar
models

logistic model <- glm(glasses ~ eyesight cat + sex cat +

data = nlsy, family = binomial ()

poisson model <- glm(nsibs ~ eyesight cat + sex cat + 1incg
data = nlsy, family = poisson()

)

logbinomial model <- glm(glasses ~ eyesight cat + sex cat

data = nlsy, family = binomial(link = "log")

1
2
3
4
5
6
7
8
9

We have a model for a table we want to
create

tbl regression(
poisson model,
exponentiate = TRUE,
label = list(

eyesight cat ~ "Eyesight”,

income ~ "Income"

1
2
3
4
5 sex cat ~ "Sex",
6
7
8
9

)

Even though this is already a function, we can wrap it in a
new function!

New table function

We can refer generically to model and then put the model
we want a table for as an argument

new table function <- function(model) {
tbl regression(
model,
exponentiate = TRUE,
label = list(
sex cat ~ "Sex",
eyesight cat ~ "Eyesight",

income ~ "Income"

Exercise

e Copy and paste this function into your script
e Create each of the models and run

e Try to figure out how you could allow someone to pass
the tidy fun argument (from the regression exercises
yesterday)

{renv}

Package management for R

Whatis{renv}??

{renv} is an R package for managing project
dependencies and creating reproducible environments

Benetfits of using { renv;

1. Isolation: Creates project-specific environments
separate from the global R library.

2. Reproducibility: Ensures consistent package versions
for code reproducibility.

3. Collaboration: Facilitates sharing and collaborating on
projects with others.

Cetting Started with { renv;

1. Install {renv}

1 install.packages("renv")

2. Initialize a project

1 renv::init()

3. Install packages

1 install.packages("other package")
2

3 install.packages("github user/github package")

4. Track dependencies via a lockfile

1 renv::snapshot()

Behind the scenes

e Your project .Rprofile is updated to include:

source("renv/activate.R")

e Thisis run every time R starts, and does some
management of the library paths to make sure when
you call install.packges("package") or
Llibrary(package) it does to the right place
(renv/1library/R-{version}/{computer-specifics})

e A renv. lock file (really just a text file) is created to store
the names and versions of the packages.

renv. lock

"R": {
"Version": "4.3.0",
"Repositories": [
{
"Name": "CRAN",
"URL": "https://cran.rstudio.com"

]
bo

"Packages": {

"R6": {
"Package": "R6",
"Version": "2.5.1",
"Source": "Repository",
"Repository": "CRAN",
"Requirements": [

ng"

1,
"Hash": "470851b6d5d0ac559e9d01bb352b4021"

by

base6d4enc": {
"Package": "baseb64denc",
"Version": "0.1-3",
"Source": "Repository",
"Repository": "CRAN",
"Requirements": [

Using 1 renv later
Restore an environment

1 renv::restore()

Install new packages

1 install.packages("other package")

Update the lockfile

1 renv::snapshot()

Collaboration with {renv}

e Share the project’s renv. lock file with collaborators to
ensure consistent environments

e When they run renv::restorel(), the correct versions of
the packages will be installed on their computer

1l renv::restore()

Other helpful functions
Remove packages that are no longer used:

1 renv::clean()

Check the status of the project library with respect to the
lockfile:

1 renv::status()

This will tell you to renv::snapshot() to add packages
you've installed but haven't snapshotted, or
renv::restore() if you're missing packages you need but
which aren't installed

Conclusion

{renv} benefits:

e |solation, reproducibility, and collaboration

GCetting started with {renv}

1.

2.
3.

nitialize a project using renv::init()

nstall packages and store with renv: :snapshot ()

Restore later or elsewhere with renv: :restore()

10

Exercises

3. Install a new R package of your choice. (Not sure what
to choose? Try one of . For example, |

did install.packages("hadley/emo").)

4. Create an R script and save it in your R project. Include
some code that requires the package. For example:

1 emo::ji("banana")

https://medium.com/geekculture/15-fun-r-packages-you-may-not-know-of-fb25a9dcd627

4. Run renv::status() to make sure your project picked
up the package as a dependency.

5.Run renv::snapshot() to record that package in your
lockfile.

6. Open your lockfile and look for your new package. For
example, mine now has:

"emo": {
"Package": "emo",
"Version": "0.0.0.9000",
"Source": "git",
"RemoteType": "git",
"RemoteUrl": "https://github.com/hadley/emo",
"RemoteHost": "api.github.com",
"RemoteUsername"”: "hadley",
"RemoteRepo": "emo",
"RemoteRef": "master",
"RemoteSha": "3f03bl11491ce3d6fc5601e210927eff73bf8e350",
"Requirements": [
"R",
"assertthat",
"crayon",
"glue",
"lubridate",

"magrittr",

11

Reports and manuscripts
with Quarto

Whatis quarto?

o Open-source document format and computational
notebook system

e |Nntegrates text, code, and outout

e Can create multiple different types of products
(documents, slides, websites, books)

Why not R Markdown?

Only because quarto is newer and more featured!

e Anything you already know how to do in R Markdown
you can do in quarto, and more!

o All of these slides, website, etc. are all made in quarto.

e |[f you know and love R Markdown, by all means keep
using it!

Quarto workflow

1. Create a Quarto document

2. Write code

3. Write text
4. Repeat 2-3 in whatever order you want

5. Render repeatedly as you go

How does it work?

e You text iIn markdown and code in R

e knitr processes the code chunks, executes the R code,
and inserts the code outputs (e.g., plots, tables) back
INnto the markdown document

e pandoc transforms the markdown document into
various output formats

Text and code...

My header
Some text
Some *italic text*

Some **bold text**

1
2
3
4
5
6
7
8

- Eggs
- Milk

- {r}
X <- 3

< >

...lbecomes...
My title
Some text

Some /talic text

Some bold text

¢ Eggs
e Milk

Ifyou prefer, you can use the visual editor
My title
Some text
Some Jjtalic text

Some bold text

ir} ¢
X <- 3
X

R chunks

Everything within the chunks has to be valid R!

[1]1 7

Chunks run in order, continuously, like a single script

YAML

At the top of your Quarto document, a header written in
yam/ describes options for the document

title: "My document”

author: Louisa Smith
format: html

There are a ton of possible options, but importantly, this
determines the document output

10

https://quarto.org/docs/output-formats/all-formats.ntml

11

https://quarto.org/docs/output-formats/all-formats.html

Exercises

We're going to focus on html output

o |t's easy to transition to Word (format: docx) but it's not
as good for constant re-rendering

e You need a LaTeX installation for pdf (format: pdf)

s | recommend {tinytex;

12

https://quarto.org/docs/reference/formats/docx.html
https://quarto.org/docs/reference/formats/pdf.html
https://yihui.org/tinytex/

Exercises

You can choose whether you want to have chunk output
show up within the document (vs. just the console) when
you are running Quarto (and RMarkdown) documents

INnteractively
Tools > Global options

R Markdown
v Show document outline by default
v Soft-wrap R Markdown files

Show in document outline: | Sections and Named Chunks v

Show output preview in: | Viewer Pane v

Show output inline for all R Markdown documents

Show equation and image previews: | In a popup v

Evaluate chunks in directory: | Project v

13

Exercises

Open up your epi590r-2023-in-class R project!
File > New File > Quarto Document

New Quarto Document

| Document Title: My document

;;f Presentation Author: Louisa Smith|

R Interactive
® HTML

Recommended format for authoring (you can switch to
PDF or Word output anytime)

O PDF

PDF output requires a LaTeX installation (e.g.
https://yihui.org/tinytex/)

O word

Previewing Word documents requires an installation of
MS Word (or Libre/Open Office on Linux)

Engine: Knitr v

Editor: Use visual markdown editor (?

?) Learn more about Quarto

Create Empty Document Create Cancel

Exercises

e Try toggling between Source and Visual views
e Toggle on and off the Outline
e Click Render and look at the output

| my-document.qmd — |
Render on Save =, Render - W -=*Run - | G-~
Source Visual Outline
IS - - - Quarto

2 title: "My document" Running Gode

3 author: "Louisa Smith"
4 format: html

5A _—

6

/7~ ## Quarto

8

9 Quarto enables you to weave together

6:1 (Top Level) = Quarto =
15

Quarto options

Chunk options

INn your Quarto document, you had a chunk:

- {r}

#| echo: false

2 * 2

NN N

#| echo: false tells knitr not to show the code within
that chunk

In RMarkdown, you would have written this {r, echo = FALSE}. You can still do that
with Quarto, but it's generally easier to read, particularly for long options (like

Chunk options

Some of the ones | find myself using most often:

e #| eval: false: Don't evaluate this chunk! Really helpful

If you're trying to isolate an error, or have a chunk that
takes a long time

e #| error: true: Render this even ifthe chunk causes an
error

e #| cache: true:Store the results of this chunk so that it
doesn't need to re-run every time, as long as there are
Nno changes

e #| warning: false: Don't print warnings

o #| message: false: Don't print messages

Document options

You can tell the entire document not to evaluate or print
code (so just include the text!) at the top:

title: "My document”
author: Louisa Smith
format: html
execute:

eval: false

echo: false

1
2
3
4
5
6
7
8

Careful! YAML is really picky about spacing.

Document options

There are for the document

e For example, you can choose a

format:
html:

theme: yeti

e Remember the pickiness: when you have a format
option, html: moves to a new line and the options are
Indented 2 spaces

https://quarto.org/docs/reference/formats/html.html
https://quarto.org/docs/output-formats/html-themes.html

Exercises

Download the quarto document with some {gtsummary r
tables from yesterday

e Change some options to hide code and output
e Add another code chunk

e Play with themes

e Deal with errors

e Add some text

Quarto tables, figures, ana
Stats

Chunks can produce figures and tables

- A{r}
#| label: tbl-one

#| tbl-cap: "This is a great table"

knitr::kable(mtcars)

Table 1. This is a great table
mpg cyl disp hp drat wt gse
Mazda RX4 210 6 160.0 110 390 2620 16.4

Mazda RX4 21.0 o 1600 110 390 2875 1/0.
Wag

Datsun 710 228 4 1080 93 385 2320 18.6

Hornet 4 214 6 2580 110 308 3215 19.4-
Drive

mpg cyl disp hp drat wt gse

Hornet 187 8 3600 175 315 3440 170
Sportabout

Valiant 181 6 2250 105 276 3460 20.2
Duster 360 143 8 360.0 245 321 3570 15.8:
Merc 240D 244 4 1467 62 369 3190 20.0(
Merc 230 228 4 1408 95 392 3150 22.9(
Merc 280 192 6 1676 123 392 3440 18.3(
Merc 280C 178 6 1676 123 392 3440 18.9(
Merc 164 8 2758 180 3.07 4.070 17.4(
450SE

Merc 4505L 173 8 2758 180 3.07 3730 17.6(

mpg cyl disp hp drat wt gse
Merc 152 8 2758 180 3.07 3780 18.0¢
450SLC
Cadillac 104 8 4720 205 293 5250 17.9
Fleetwood
Lincoln 104 8 4600 215 300 5424 178
Continental
Chrysler 147 8 4400 230 323 5345 174
Imperial
Fiat 128 24 4 787 66 408 2200 19.4
Honda 304 4 757 52 493 1615 18.5

Civic

mpg cyl disp hp drat wt gse

Toyota 339 4 711 65 422 1835 19.9(
Corolla

Toyota 215 4 1201 97 370 2465 20.0
Corona

Dodge 155 8 3180 150 276 3520 16.8
Challenger

AMC 152 8 3040 150 315 3435 17.3(
Javelin

Camaro 13.3 8 350.0 245 373 3840 154
728

Pontiac 192 8 4000 175 3.08 3845 170!

Firebird

mpg cyl disp hp drat wt gse
Fiat X1-9 27.3 4 79.0 oo 4.08 1935 18.9¢(
Porsche 26.0 4 120.3 Ol 443 2140 16.7(
914-2
Lotus 30.4 4 O51 13 3.77 1.513 16.9(
Europa
~ord 158 8 3510 264 422 3170 14.5(
Pantera L
~errari Dino 19.77 o 1450 1/5 362 2770 15.5(
Maseratl 15.0 8 301.0 335 354 3570 14.6(
Bora
Volvo 142E 21.4 4 121.0 109 411 2.780 18.6(

Chunks can produce figures or tables

- A{r}
#| label: fig-hist

#| fig-cap: "This is a histogram"

hist(rnorm(100))

NN N

Histogram of rnorm(100)

Frequency

Figure 1. This is a histogram

Cross-referencing

You can then refer to those with @tbl-one and @fig-hist

and the Table and Figure ordering will be correct (and
linked)

@fig-hist contains a histogram and @tbl-one a table.
gets printed as:

Flgure 1 contains a histogram and Table | a table.

INliNne R

Along with just regular text, you can also run R code
within the text:

There were "r 3 + 4~ participants

becomes:

There were 7 participants

INliNne R

This is helpful for reporting statistics, e.g. the sample size:

There were r nrow(nlsy) participants

becomes:

There were 1.2686A{4} participants

INnline stats

You can also create an object in a chunk and then
reference it later in the text

- {r}

total sample <- nrow(nlsy)

NSNS

There were r total sample participants

Inline stats (aside)

| often create a list of stats that | want to report in a
manuscript:

1 stats <- list(n = nrow(data),

2 mean age = mean(data$age))

| can then print these numbers in the text with:

There were "r stats$n participants with a mean age of
"r stats$mean_age .

which turns into:

There were 1123 participants with a mean age of 43.5.

Inline stats from {gtsummary ;

We saw very, very briefly yesterday:

library(gtsummary)
income table <- tbl uvregression(
nlsy,
y = income,
include = c(
sex cat, race eth cat,
eyesight cat, income, age bir
) 1
method = 1m

1
2
3
4
5
6
7
8
9

-
o

inline text(income table, variable = "age bir")

[1] "595 (95% CI 538, 652; p<0.001)"

We pulled a statistic from our univariate table

[fwe're making a table, we probalbly want
to report numbersfrom it

" {r}
#| label: tbl-descr

#| tbl-cap: "Descriptive statistics”

#| output-location: slide
tablel <- tbl summary(
nlsy,
by = sex cat,

include = c(sex cat, race eth cat, region cat,

1
2
3
4
5
6
7
8
9

eyesight cat, glasses, age bir)) |>
add overall(last = TRUE)
tablel

NN S

e e
N B O

[fwe're making a table, we probalbly want

to report numbersfrom it

Characteristic

race_eth_cat
Hispanic
Black
Non-Black, Non-Hispanic

region_cat
Northeast
North Central
South
West
Unknown

eyesight_cat

1

n (%); Median (Q1, Q3)

Male
N =6,403
1

1,000 (16%)
1,613 (25%)

3,790 (59%)

1,296 (21%)

1,488 (24%)

2,251 (36%)

1,253 (20%)
15

Table 2: Descriptive statistics

Female
N = 6,283
1

1,002 (16%)
1,561 (25%)

3,720 (59%)

1,254 (20%)
1,446 (23%)
2,317 (38%)
1,142 (19%)

124

Overall
N =12,686
1

2,002 (16%)
3,174 (25%)

7,510 (59%)

2,550 (20%)
2,934 (24%)
4,568 (37%)
2,395 (19%)
239

Characteristic
Excellent
Very good
Good
Fair
Poor
Unknown

glasses
Unknown

age_bir

Unknown

1

n (%); Median (Q1, Q3)

Male
N = §,403
1,582 (38%)
1,470 (35%)
792 (19%)
267 (6.4%)
47 (1.1%)
2,245
1,566 (38%)
2,241
25 (21, 29)
3,652

Female
N = §,283
1,334 (31%)
1,500 (35%)
1,002 (23%)
365 (8.5%)
85 (2.0%)
1,997
2,328 (54%)
1,995
22 (19, 27)

3,091

Overall
N = 172,686
2,916 (35%)
2,970 (35%)
1,794 (21%)
632 (7.5%)
132 (1.6%)
4,242
3,894 (46%)
4,236
23 (20, 28)
6,743

11

| want to report some stats!

The help file for inline_text () is helpful and tells us that
we can look at tablel$table_body to help figure out what
data to extract.

How about the median (IQR) age of the male participants
at the birth of their first child?

1 inline text(tablel, variable = "age bir", column = "stat

[1] "25 (21, 29)"

12

Formatting

We can add sample sizes for the overall stats on people
who wear glasses using the pattern =argument:

1 inline text(tablel, variable = "glasses", column = "stat (

2 pattern = "{n}/{N} ({p}%)")

3,894/8450 (46%)

13

Formatting for regression statistics

Remove some details:

1 inline text(income table, variable

[1] "595 (95% CI 538, 652; p<0.001)"

1 inline text(income table, variable "age bir",

2 pattern = "{estimate} ({conf.low}, {conf.high

[1] "595 (538, 652)"

14

Better yet...

We can integrate these into the text of our manuscript:

A greater proportion of female (r inline text(tablel,

variable = "glasses", column = "stat 2")) than male
(' r inline text(tablel, variable = "glasses", column =
"stat 1")) participants wore glasses.

Which becomes:;

A greater proportion of female (2,328 (54%)) than male
(1,566 (38%)) participants wore glasses.

15

Readability

Because this can be hard to read, I'd suggest storing those
stats in a chunk before the text:
T {r}

glasses f <- inline text(tablel, variable = "glasses",

column = "stat 2")

glasses m <- inline text(tablel, variable = "glasses",

column = "stat 1")

A greater proportion of female (r glasses f) than male

16

Exercises

Return to the quarto document with the tables.

e Choose a table to label and caption, and then write a
sentence that cross-references it (e.q., Table 1 shows the
descriptive statistics)

e Edit or create a new table that has the median hours of
sleep on weekends in it (in the overall sample).

e Pull that value from a table.

17

Functions

Functionsin R

I've been denoting functions with parentheses: func()

We've seen functions such as:

e mean()

e th1l summary()

e init()

e create_github_token

Functions take arguments and return values

Looking Inside a function

If you want to see the code within a function, you can just
type its name without the parentheses:

1 usethis::create github token

function (scopes = c("repo", "user", "gist", "workflow"), description = "DESCRIBE THE TOKEN'S USE
CASE",
host = NULL)

scopes <- glue collapse(scopes, ",")

host <- get hosturl(host %||% default api url())

url <- glue("{host}/settings/tokens/new?scopes={scopes}&description={description}")
withr::defer(view url(url))

hint <- code hint with host("gitcreds::gitcreds set", host)

message <- c(_~ = "Call {.run {hint}} to register this token in the local Git\n
credential store.")

if (is_linux()) {

message <- c(message, ! = "On Linux, it can be tricky to store credentials
persistently."”,
i = "Read more in the {.href ['Managing Git(Hub) Credentials' article]

(https://usethis.r-lib.org/articles/articles/git-credentials.html)}.")

}

message <- c(message, i = "It is also a great idea to store this token in any\n

password-management software that you use.")

Structure of a function

1 func <- function()

You can name your function like you do any other object

e Just avold names of existing functions

Structure of a function

1 func <- function(argl,

2 arg2 = default val)
3}

What objects/values do you need to make your function
work™?

e YOou can give them default values to use if the user
doesn't specify others

Structure of a function

func <- function(argl,
arg2 = default val) {

Everything else goes within curly braces

o Code in here will essentially look like any other R code,
using any inputs to your functions

Structure of a function

func <- function(argl,
arg2 = default val) {

new val <-

}

e One thing you'll likely want to do is make new objects
along the way

e These aren't saved to your environment (i.e., you won't
see them Iin the upper-right window) when you run the
function

e You can think of them as being stored in a temporary
environment within the function

Structure of a function

func <- function(argl,
arg2 = default val) {

return(new _val)

1
2
3 new val <-
4
5

}

Return something new that the code has produced

e The return() statement is actually optional. If you don't
put it, it will return the last object in the code. When
you're starting out, it's safer to always explicitly write out
what you want to return.

Example: a new function for the mean

Let's say we are not satisfied with the mean () function and
want to write our own.

Here's the general structure we'll start with.

1 new mean <- function() {

2
3}

New mean: arguments

We'll want to take the mean of a vector of numbers.

It will help to make an example of such a vector to think
about what the input might look like, and to test the
function. We'll call it x:

We can add x as an argument to our function:

1 new mean <- function(x)

2
3}

10

New mean: function body

Let's think about how we calculate a mean in math, and
then translate it into code:

1 n
n 4
1=1

So we need to sum the elements of x together, and then
divide by the number of elements.

11

We can use the functions sum() and length() to help us.

We'll write the code with our test vector first, before
Inserting it into the function:

1l n <- length(x)

2 sum(x) / n

[1] S

12

New mean: function body

Our code seems to be doing what we want, so let's insert
It. To be explicit, I've stored the answer (within the
function) as mean_val, then returned that value.

1 new mean <- function(x) {

n <- length(x)

mean val <- sum(x) / n

return(mean val)

13

Testing afunction

Let's plug in the vector that we created to test It:
1 new mean(x = X)

[1] 5

And then try another one we create on the spot:

1l new mean(x = c(100, 200, 300))

[1] 200

14

Exercises

Create some functions!

Create an R script in your project called functions.R to
save your work!

15

Functions, continued

Adding another argument

Let's say we plan to be using our new_mean() function to
calculate proportions (i.e., the mean of a binary variable).
Sometimes we'll want to report them as as percentage by
multiplying the proportion by 100.

Let's name our new function prop (). We'll use the same
structure as we did with new mean().

1 prop <- function(x) {

2 n <- length(x)

mean val <- sum(Xx)

Testing the code

Now we'll want to test on a vector of 'sand O’s.

1 x <- c(0, 1, 1)

To calculate the proportion and turn it into a percentage,
we'll just multiply the mean by 100.

1 multiplier <- 100

2 multiplier * sum(x) / lengt

[1] 66.66667

Testing the code

We want to give users the option to choose between a
proportion and a percentage. So we'll add an argument
multiplier. When we want to just return the proportion,
we can just set multiplier to bel.

1 multiplier <- 1

2 multiplier * sum(x) / lengt
[1] 0.6666667

1 multiplier <- 100

2 multiplier * sum(x) / lengt

Adding another argument

Ifwe add multiplier as an argument, we can refertoitin
the function bodly.

prop <- function(x, multipli

n <- length(x)
mean val <- multiplier * s

return(mean val)

Adding another argument

Now we can test:

0), multiplier

[1] 0.5

0), multiplier

Making a default argument

Since we don't want users to have to specify multiplier =
1 every time they just want a proportion, we can set it as a

default.

prop <- function(x, multiplier

n <- length(x)

1
2
3 mean val <- multiplier * sum(Xx)
4 return(mean val)

5

}

Now we only need to specify that argument if we want a
percentage.

[1] 0.75

1), multiplier = 100)

Caveats

e This is obviously not the best way to write this function!

e For example, it will still work if x = ¢(123, 593, -192)....
out it certainly won't give you a proportion or a
percentage!

e We could also putmultiplier = any humber,and we'll
just be multiplying the answer by that number - this is
essentially meaningless.

e \We also haven't done any checking to see whether the
user is even entering numbers! We could put in better
error messages so users don't just get an R default error
message If they do something wrong.

1 prop(x = c("blah", "blah", "blah"))

Functions, continued

Writing functions to reduce copy and
paste

If you find yourself doing something over and over, you
can probably write a function for It.

One Is example is the regression tables we created
yesterday.

Let's Imagine we are fitting multiple similar
models

logistic model <- glm(glasses ~ eyesight cat + sex cat +

data = nlsy, family = binomial ()

poisson model <- glm(nsibs ~ eyesight cat + sex cat + 1incg
data = nlsy, family = poisson()

)

logbinomial model <- glm(glasses ~ eyesight cat + sex cat

data = nlsy, family = binomial(link = "log")

1
2
3
4
5
6
7
8
9

We have a model for a table we want to
create

tbl regression(
poisson model,
exponentiate = TRUE,
label = list(

eyesight cat ~ "Eyesight”,

income ~ "Income"

1
2
3
4
5 sex cat ~ "Sex",
6
7
8
9

)

Even though this is already a function, we can wrap it in a
new function!

New table function

We can refer generically to model and then put the model
we want a table for as an argument

new table function <- function(model) {
tbl regression(
model,
exponentiate = TRUE,
label = list(
sex cat ~ "Sex",
eyesight cat ~ "Eyesight",

income ~ "Income"

Exercise

e Copy and paste this function into your script
e Create each of the models and run

e Try to figure out how you could allow someone to pass
the tidy fun argument (from the regression exercises
yesterday)

{renv}

Package management for R

Whatis{renv}??

{renv} is an R package for managing project
dependencies and creating reproducible environments

Benetfits of using { renv;

1. Isolation: Creates project-specific environments
separate from the global R library.

2. Reproducibility: Ensures consistent package versions
for code reproducibility.

3. Collaboration: Facilitates sharing and collaborating on
projects with others.

Cetting Started with { renv;

1. Install {renv}

1 install.packages("renv")

2. Initialize a project

1 renv::init()

3. Install packages

1 install.packages("other package")
2

3 install.packages("github user/github package")

4. Track dependencies via a lockfile

1 renv::snapshot()

Behind the scenes

e Your project .Rprofile is updated to include:

source("renv/activate.R")

e Thisis run every time R starts, and does some
management of the library paths to make sure when
you call install.packges("package") or
Llibrary(package) it does to the right place
(renv/1library/R-{version}/{computer-specifics})

e A renv. lock file (really just a text file) is created to store
the names and versions of the packages.

renv. lock

"R": {
"Version": "4.3.0",
"Repositories": [
{
"Name": "CRAN",
"URL": "https://cran.rstudio.com"

]
bo

"Packages": {

"R6": {
"Package": "R6",
"Version": "2.5.1",
"Source": "Repository",
"Repository": "CRAN",
"Requirements": [

ng"

1,
"Hash": "470851b6d5d0ac559e9d01bb352b4021"

by

base6d4enc": {
"Package": "baseb64denc",
"Version": "0.1-3",
"Source": "Repository",
"Repository": "CRAN",
"Requirements": [

Using 1 renv later
Restore an environment

1 renv::restore()

Install new packages

1 install.packages("other package")

Update the lockfile

1 renv::snapshot()

Collaboration with {renv}

e Share the project’s renv. lock file with collaborators to
ensure consistent environments

e When they run renv::restorel(), the correct versions of
the packages will be installed on their computer

1l renv::restore()

Other helpful functions
Remove packages that are no longer used:

1 renv::clean()

Check the status of the project library with respect to the
lockfile:

1 renv::status()

This will tell you to renv::snapshot() to add packages
you've installed but haven't snapshotted, or
renv::restore() if you're missing packages you need but
which aren't installed

Conclusion

{renv} benefits:

e |solation, reproducibility, and collaboration

GCetting started with {renv}

1.

2.
3.

nitialize a project using renv::init()

nstall packages and store with renv: :snapshot ()

Restore later or elsewhere with renv: :restore()

10

Exercises

3. Install a new R package of your choice. (Not sure what
to choose? Try one of . For example, |

did install.packages("hadley/emo").)

4. Create an R script and save it in your R project. Include
some code that requires the package. For example:

1 emo::ji("banana")

https://medium.com/geekculture/15-fun-r-packages-you-may-not-know-of-fb25a9dcd627

4. Run renv::status() to make sure your project picked
up the package as a dependency.

5.Run renv::snapshot() to record that package in your
lockfile.

6. Open your lockfile and look for your new package. For
example, mine now has:

"emo": {
"Package": "emo",
"Version": "0.0.0.9000",
"Source": "git",
"RemoteType": "git",
"RemoteUrl": "https://github.com/hadley/emo",
"RemoteHost": "api.github.com",
"RemoteUsername"”: "hadley",
"RemoteRepo": "emo",
"RemoteRef": "master",
"RemoteSha": "3f03bl11491ce3d6fc5601e210927eff73bf8e350",
"Requirements": [
"R",
"assertthat",
"crayon",
"glue",
"lubridate",

"magrittr",

11

Reports and manuscripts
with Quarto

Whatis quarto?

o Open-source document format and computational
notebook system

e |Nntegrates text, code, and outout

e Can create multiple different types of products
(documents, slides, websites, books)

Why not R Markdown?

Only because quarto is newer and more featured!

e Anything you already know how to do in R Markdown
you can do in quarto, and more!

o All of these slides, website, etc. are all made in guarto.

e |fyou know and love R Markdown, by all means keep
using it!

1 Sliaht caveat

Quarto workflow

1. Create a Quarto document

2. Write code
3. Write text
4. Repeat 2-3 In whatever order you want

5. Render

How does it work?

e You text in markdown and code in R

e knitr processes the code chunks, executes the R code,
and inserts the code outputs (e.g., plots, tables) back
INnto the markdown document

e pandoc transforms the markdown document into
various output formats

Text and code...

My header
Some text
Some *italic text*

Some **bold text**

1
2
3
4
5
6
7
8

- Eggs
- Milk

R

X <= 3

...becomes...
My title
Some text

Some /talic text

Some bold text

» Eggs
e Milk

l1 x <- 3

2 X

[1] 3

[t you prefer, you can use the visual editor
My title
Some text
Some jtalic text

Some bold text

{r})
X <- 3
X

R chunks

Everything within the chunks has to be valid R’

[1] 7

Chunks run in order, continuously, like a single script

1 Youl can also tise other lanatiaaes like Pvthon!

YAML

At the top of your Quarto document, a header written in
yaml describes options for the document

title: "My document”

author: Louisa Smith
format: html

There are a ton of possible options, but importantly, this
determines the document output

10

https://quarto.org/docs/output-formats/all-formats.ntml

11

https://quarto.org/docs/output-formats/all-formats.html

Exercises

We're going to focus on htm| output

e |t's easy to transition to Word (format: docx) but it's not
as good for constant re-rendering

e You need a LaTeX installation for pdf

» | recommend {tinytex}

12

https://quarto.org/docs/reference/formats/docx.html
https://yihui.org/tinytex/

Exercises

You can choose whether you want to have chunk output
show up within the document (vs. just the console) when
you are running Quarto (and RMarkdown) documents

INnteractively
Tools > Global options

R Markdown
v Show document outline by default
v Soft-wrap R Markdown files

Show in document outline: | Sections and Named Chunks v

Show output preview in: | Viewer Pane v

Show output inline for all R Markdown documents

Show equation and image previews: | In a popup v

Evaluate chunks in directory: | Project

13

Exercises

Open up your epi590r-2023-in-class R project!

File > New File > Quarto Document

New Quarto Document

| Document
;;f Presentation

R Interactive

Create Empty Document

Title: My document

Author: | Louisa Smith|

® HTML

Recommended format for authoring (you can switch to
PDF or Word output anytime)

O pDF

PDF output requires a LaTeX installation (e.g.
https://yihui.org/tinytex/)

O Word

Previewing Word documents requires an installation of
MS Word (or Libre/Open Office on Linux)

Engine: Knitr v

Editor: Use visual markdown editor (?

?) Learn more about Quarto

Create Cancel

14

Exercises

e Try toggling between Source and Visual views
e Toggle on and off the Outline
e Click Render and look at the output

| my-document.qmd e [
Render on Save =, Render - W ~*Run -~ | G~
Source = Visual Outline
1~ --- Quarto

Running Code

2 title: "My document™

3 author: "Louisa Smith"
4 format: html

5A _—

6

7/~ ## Quarto

8

9 Quarto enables you to weave together

6:1 (Top Level) = Quarto =
15

Quarto options

Chunk options

INn your Quarto document, you had a chunk:

- {r}

#| echo: false

2 * 2

NN N

#| echo: false tells knitr not to show the code within
that chunk

In RMarkdown, you would have written this {r, echo = FALSE}. You can still do that
with Quarto, but it's generally easier to read, particularly for long options (like

Chunk options

Some of the ones | find myself using most often:

e #| eval: false: Don't evaluate this chunk! Really helpful

If you're trying to isolate an error, or have a chunk that
takes a long time

e #| error: true: Render this even ifthe chunk causes an
error

e #| cache: true:Store the results of this chunk so that it
doesn’'t need to re-run every time, as long as there are
no changes

e #| warning: false: Don't print warnings

o #| message: false: Don't print messages

Document options

You can tell the entire document not to evaluate or print
code (so just include the text!) at the top:

title: "My document”
author: Louisa Smith
format: html
execute:

eval: false

echo: false

1
2
3
4
5
6
7
8

Careful! YAML is really picky about spacing.

Document options

There are for the document

e For example, you can choose a

format:
html:

theme: yeti

e Remember the pickiness: when you have a format
option, html: moves to a new line and the options are
Indented 2 spaces

https://quarto.org/docs/reference/formats/html.html
https://quarto.org/docs/output-formats/html-themes.html

Exercises

Download the quarto document with some {gtsummary r
tables from yesterday

e There's an error in the code! Try to render it. Play around
with eval: and error: chunk and document options to

help you a) find the error and b) render the document
despite the error. Then fix the error.

e | don't like the output from the first chunk, where the
passages are loaded. Make it so that we don't see this
chunk’s code or output.

e Play around with themes!

Quarto tables, figures, and
Stats

Chunks can produce figures and tables

- {r}
#| label: tbl-one

#| tbl-cap: "This is a great table"

knitr::kable(mtcars)

Table 1: This Is a great table
mpg cyl disp hp drat wt (qgse
Mazda RX4 210 6 1600 110 390 2620 164

Mazda RX4 210 6 1600 110 390 2875 170:
Wag

Datsun 710 228 4 1080 93 385 2320 186

mpg cyl disp hp drat wt qgse

Hornet 4 214 6 2580 110 308 3215 19.4
Drive

Hornet 187 8 3600 175 315 3440 17.0
Sportabout

Valiant 181 6 2250 105 276 3.460 202
Duster 360 143 8 360.0 245 321 3570 15.8:
Merc 240D 244 4 1467 62 369 3190 20.0(
Merc 230 228 4 1408 95 392 3150 22.9(
Merc 280 192 6 1676 123 392 3440 18.3(
Merc280C 178 6 1676 123 392 3440 18.9(
Merc 164 8 2758 180 3.07 4.070 17.4¢

450SE

mpg cyl disp hp drat wt qgse
Merc 450SL 17.3 8 2758 180 3.07 3730 17.6(
Merc 15.2 8 2758 180 3.07 3780 18.0¢
450SLC
Cadillac 104 8 4720 205 293 5250 17.9¢
Fleetwood
Lincoln 104 8 460.0 215 300 5424 178
Continental
Chrysler 14.77 8 440.0 230 323 5345 174
mperial
~1at 128 32.4 4 787 66 4.08 2200 194
Honda 30.4 4 75.7 52 493 1615 18.5

Civic

mpg cyl disp hp drat wt qgse
Toyota 339 4 711 65 422 1.835 19.9(
Corolla
Toyota 215 4 1201 97 370 2465 200
Corona
Dodge 155 8 3180 150 276 3520 16.8
Challenger
AMC 152 8 3040 150 315 3435 17.3(
Javelin
Camaro 13.3 8 350.0 245 373 3840 154
728
Pontiac 192 8 4000 175 308 3845 170!

Firebird

mpg cyl disp hp drat wt qgse

Fiat X1-9 273 4 790 66 4.08 1935 18.9(
Porsche 260 4 1203 91 443 2140 16.7(
914-2

Lotus 304 4 951 13 377 1513 16.9(
Europa

~ord 158 8 3510 264 422 3170 14.5(
PDantera L

—errari Dino 197 6 145.0 175 362 2770 15.5(

Maserati 15.0 8 301.0 335 354 3570 14.0(
Bora

Volvo 142E 214 4 1210 109 411 2.780 18.6(

Chunks can produce figures or tables

- {r}
#| label: fig-hist

#| fig-cap: "This is a histogram"
hist(rnorm(100))

NN S

Histogram of rnorm(100)

] I T T T 1
-3 -2 -1 0 1 2

rnorm(100)

Figure 1: This is a histogram

Cross-referencing

You can then refer to those with @tbl-one and @fig-hist

and the Table and Figure ordering will be correct (and
linked)

@fig-hist contains a histogram and @tbl-one a table.
gets printed as:

Flgure 1 contains a histogram and Table | a table.

There are currently some bugs with cross-referencing in Word docs which will be

INnline R

Along with just regular text, you can also run R code
within the text:

There were r 3 + 4° participants

becomes:

There were 7 participants

INnline stats

| often create a list of stats that | want to report in a
manuscript:

1 stats <- list(n = nrow(data),

2 mean age = mean(data$age))

| can then print these numbers In the text with:

There were "r stats$n participants with a mean age of
"r stats$mean_age .

which turns into:

There were 1123 participants with a mean age of 43.5.

Inline stats from {gtsummary ;

We saw very, very briefly yesterday:

1 inline text(income table, variable = "age bir")

[1] "595 (95% CI 538, 652; p<0.001)"

We pulled a statistic from our univariate table

[fwe're making a table, we prolbably want
to report numbersfrom it

" {r}
label: tbl-descr

tbl-cap: "Descriptive statistics”

output-location: slide
tablel <- tbl summary(
nlsy,

by = sex cat,

include = c(sex cat, race eth cat, region cat,

1
2
3
/L
5
6
7
8
9

eyesight cat, glasses, age bir)) |>
add overall(last = TRUE)
tablel

NN N

= = e
N — O

[fwe're making a table, we probably want

to report numbersfrom it

Characteristic
race_eth_cat
Hispanic
Black
Non-Black, Non-Hispanic
region_cat
Northeast
North Central
South
West
Unknown
eyesight_cat
Excellent

Very good

1

n (%); Median (IQR)

Table 2:

Descriptive statistics

1,000 (16%)
1,613 (25%)
3,790 (59%)

1,296 (21%)
1,488 (24%)
2,251 (36%)
1,253 (20%)

115

1,582 (38%)

1,470 (35%)

1,002 (16%)
1,561 (25%)

3,720 (59%)

1,254 (20%)
1,446 (23%)
2,317 (38%)
1,142 (19%)

124

1,334 (31%)
1,500 (35%)

Male, N = 6,403' Female, N = 6,283" Overall, N = 12,686

2,002 (16%)
3,174 (25%)

7,510 (59%)

2,550 (20%)
2,934 (24%)
4,568 (37%)
2,395 (19%)
239

2,916 (35%)
2,970 (35%)

Characteristic Male, N = 6,403" Female, N = 6,283’ Overall, N = 12,686’

Good 792 (19%) 1,002 (23%) 1,794 (21%)
Fair 267 (6.4%) 365 (8.5%) 632 (7.5%)
Poor 47 (1.1%) 85 (2.0%) 132 (1.6%)
Unknown 2,245 1,997 4,242
glasses 1,566 (38%) 2,328 (54%) 3,894 (46%)
Unknown 2,241 1,995 4,236
age_bir 25 (21, 29) 22 (19, 27) 23 (20, 28)
Unknown 3,652 3,091 6,743

"N (%); Median (IQR)

| want to report some stats!

How about the median (IQR) age of the male participants
at the birth of their first child?

1 inline text(tablel, variable = "age bir", column = "Male")

[1] "25 (21, 29)"

Or the frequency and percentage of women from the
South?

1 inline text(tablel, variable = "region cat", level = "South",

[1] "2,317 (38%)"

And the overall stats on people who wear glasses?

1 inline text(tablel, variable = "glasses", column = "stat 0",

2 pattern = "{n}/{N} ({p}%)")

10

Better yet...

We can integrate these into the text of our manuscript:

A greater proportion of female (r inline text(tablel,

variable = "glasses", column = "Female")) than male
('r inline text(tablel, variable = "glasses", column =
"Male")) participants wore glasses.

Which becomes;

A greater proportion of female (2,328 (54%)) than male
(1,566 (38%)) participants wore glasses.

11

Readabllity

Because this can be hard to read, I'd suggest storing those
stats in a chunk before the text:

- {r}
glasses f <- inline text(tablel, variable "glasses",
column = "Female"

glasses m <- inline text(tablel, variable "glasses",

column = "Male")

A greater proportion of female (r glasses f) than male (r glass

12

Exercises

Return to the quarto document with the tables.

e Choose a table to label and caption, and then write a
sentence that cross-references it (e.g., Table 1 shows the
descriptive statistics)

e From that table, choose at least two statistics to pull out
of the table and include in the text using inline text().

e Add another statistic to the text that you calculate
yourself using the nlsy data, e.g., the mean number of
hours of sleep on weekends.

13

{renv}

Package management for R

Whatis{renv}??

irenv} Is an R package for managing project
dependencies and creating reproducible environments

Benefits of using { renv;

1. Isolation: Creates project-specific environments
separate from the global R library.

2. Reproducibility: Ensures consistent package versions
for code reproducibility.

3. Collaboration: Facilitates sharing and collaborating on
projects with others.

Cetting Started with { renv;

1. Install {renv}

1 install.packages("renv")

2. Initialize a project

1 renv::init()

3. Install packages

1 install.packages("other package")
2

3 install.packages("github user/github package")

4. Track dependencies via a lockfile

1 renv::snapshot()

Behind the scenes

e Your project .Rprofile is updated to include:

1 source('"renv/activate.R")

e Thisis run every time R starts, and does some
mManagement of the library paths to make sure when
you call install.packges("package") or
library(package) it does to the right place
(renv/library/R-{version}/{computer-specifics})

e A renv. lock file (really just a text file) is created to store
the names and versions of the packages.

renv. lock

"R": {
"Version": "4.3.0",
"Repositories": [
{
"Name": "CRAN",
"URL": "https://cran.rstudio.com"

]
}o

"Packages": {

"R6": {
"Package": "R6",
"Version": "2.5.1",
"Source": "Repository",
"Repository": "CRAN",
"Requirements": [

ng"

]l
"Hash": "470851b6d5d0ac559e9d01bb352b4021"

}l

base6denc": {
"Package": "baseb6d4enc",
"Version": "0.1-3",
"Source": "Repository",
"Repository": "CRAN",
"Requirements": [

Using { renv later
Restore an environment

1 renv::restore()

Install new packages

1 install.packages("other package")

Update the lockfile

1 renv::snapshot()

Collaboration with { renv }

e Share the project’s renv. lock file with collaborators to
ensure consistent environments

e When they run renv::restore(), the correct versions of
the packages will be installed on their computer

1l renv::restore()

Other helpful functions

Remove packages that are no longer used:

1l renv::clean()

Check the status of the project library with respect to the
lockfile:

1 renv::status()

This will tell you to renv: :snapshot() to add packages
you've installed but haven't snapshotted, or
renv::restore() if you're missing packages you need but
which aren't installed

Conclusion

{renv} benefits:;

e |solation, reproducibility, and collaboration

Cetting started with {renv}

1.

2.
3.

nitialize a project using renv::init()

nstall packages and store with renv: :snapshot ()

Restore later or elsewhere with renv: : restorel()

10

Exercises

3. Install a new R package of your choice. (Not sure what
to choose? Try one of . For example, |

did install.packages('"hadley/emo").)

4. Create an R script and save it in your R project. Include
some code that requires the package. For example:

1l emo::ji("banana')

https://medium.com/geekculture/15-fun-r-packages-you-may-not-know-of-fb25a9dcd627

4. Run renv::status() to make sure your project picked
up the package as a dependency.

5.Run renv::snapshot() to record that package in your
lockfile.

6. Open your lockfile and look for your new package. For
example, mine now has:

n emO” : {
"Package": "emo",
"Version": "0.0.0.9000",

"Source": "git",

"RemoteType": "git",

"RemoteUrl": "https://github.com/hadley/emo",
"RemoteHost": "api.github.com",
"RemoteUsername": "hadley",

"RemoteRepo": "emo",

"RemoteRef": "master",

"RemoteSha": "3f03bl11491ce3d6fc5601e210927ef£f73bf8e350",
"Requirements": [

"R",

"assertthat",

"crayon",

"glue",

"lubridate",

"magrittr",

11

Functions

Functionsin R

I've been denoting functions with parentheses: func()

We've seen functions such as:

e mean()

e th1l summary()

e init()

e create_github_token

Functions take arguments and return values

Looking INside a function

If you want to see the code within a function, you can just
type its name without the parentheses:

1 usethis::create github token

function (scopes = c("repo", "user", "gist", "workflow"), description = "DESCRIBE THE TOKEN'S USE
CASE",

host = NULL)
{

scopes <- glue collapse(scopes, ",")

host <- get hosturl(host %||% default api url())

url <- glue("{host}/settings/tokens/new?scopes={scopes}&description={description}")

withr::defer(view url(url))

hint <- code hint with host("gitcreds::gitcreds set", host)

ui todo("\n Call {ui code(hint)} to register this token in the \\\n local Git
credential store\n It is also a great idea to store this token in any password-management \\\n

software that you use")
invisible()

}

<bytecode: 0x104c98aal>

<environment: namespace:usethis>

Structure of a function

1 func <- function()

You can name your function like you do any other object

e Just avoid names of existing functions

Structure of a function

1 func <- function(argl,

2 arg2 = default val)
3}

What objects/values do you need to make your function
work™?

e You can give them default values to use if the user
doesn't specify others

Structure of a function

func <- function(argl,
arg2 = default val) {

Everything else goes within curly braces

e Code in here will essentially look like any other R code,
using any inputs to your functions

Structure of a function

func <- function(argl,
arg2 = default val) {

new val <-

}

e One thing you'll likely want to do is make new objects
along the way

e These aren't saved to your environment (i.e., you won't
see them In the upper-right window) when you run the
function

e You can think of them as being stored Iin a temporary
environment within the function

Structure of a function

func <- function(argl,
arg2 = default val) {

return(new_val)

1
2
3 new val <-
4
5

}
Return something new that the code has produced

e The return() statement is actually optional. If you don't
put it, it will return the last object in the code. When
you're starting out, it's safer to always explicitly write out
what you want to return.

Example: a new function for the mean

Let's say we are not satisfied with the mean() function and
want to write our own.

Here's the general structure we'll start with.

1 new mean <- function() {

2
3}

New mean: arguments

We'll want to take the mean of a vector of numbers.

It will help to make an example of such a vector to think
about what the input might look like, and to test the
function. We'll call it x:

l x <= c¢(1, 3, 5, 7, 9)

We can add x as an argument to our function:

1 new mean <- function(x) {

2
3}

10

New mean: function body

Let's think about how we calculate a mean in math, and
then translate it into code:

1 n
n 4
1=1

So we need to sum the elements of x together, and then
divide by the number of elements.

11

We can use the functions sum() and length() to help us.

We'll write the code with our test vector first, before
Inserting it into the function:

1l n <- length(x)

2 sum(x) / n

[1] 5

12

New mean: function body

Our code seems to be doing what we want, so let's insert
It. To be explicit, I've stored the answer (within the
function) as mean_val, then returned that value.

1 new mean <- function(x) {

2 n <- length(x)

mean val <- sum(x) / n

return(mean val)

13

Testing a function

Let's plug in the vector that we created to test It:
1 new mean(x = X)

[1] 5

And then try another one we create on the spot:

1l new mean(x = c¢(100, 200, 300))

[1] 200

14

Adding another argument

Let's say we plan to be using our new_mean() function to
calculate proportions (i.e., the mean of a binary variable).
Sometimes we'll want to report them as as percentage by
Mmultiplying the proportion by 100.

Let's name our new function prop (). We'll use the same
structure as we did with new mean().

1 prop <- function(x) {

2 n <- length(x)

mean val <- sum(x) / n

15

Testing the code

Now we'll want to test on a vector of 'sand O’s.

l x <= c(0, 1, 1)

To calculate the proportion and turn it into a percentage,
we'll just multiply the mean by 100.

1 multiplier <- 100

2 multiplier * sum(x) / length(x)

[1] 66.66667

16

Testing the code

We want to give users the option to choose between a
proportion and a percentage. So we'll add an argument
multiplier. When we want to just return the proportion,
we can just setmultiplier to bel.

1l multiplier <- 1

2 multiplier * sum(x) / length(x)
[1] 0.6666667

1 multiplier <- 100

2 multiplier * sum(x) / length(x)

17

Adding another argument

Ifwe add multiplier as an argument, we can refertoitin
the function bodly.

1l prop <- function(x, multiplier) {
2 n <- length(x)

mean val <- multiplier * sum(x) /

return(mean val)

18

Adding another argument

Now we can test;:

0), multiplier

[1] 0.5

0), multiplier

[1] 50

19

Making a default argument

Since we don't want users to have to specify multiplier
1 every time they just want a proportion, we can set it as a

default.

prop <- function(x, multiplier = 1) {

n <- length(x)

1
2
3 mean val <- multiplier * sum(x) / n
4 return(mean val)

5

}

Now we only need to specify that argument if we want a
percentage.

[1] 0.75

1), multiplier = 100)

20

Caveats

e This is obviously not the best way to write this function!

e For example, it will still work if x = c(123, 593, -192)....
but it certainly won't give you a proportion or a
percentage!

e We could also putmultiplier =any number,and we'll

just be multiplying the answer by that number —this is
essentially meaningless.

e We also haven't done any checking to see whether the
user is even entering numbers! We could put in better
error messages so users don't just get an R default error
message If they do something wrong.

— C(”blah”, ”blah", llblah”))

21

Exercises

Create some functions!

Create an R script in your project called functions.R to
save your work!

22

{targets}

Whatis{targets}??

“a Make-like pipeline tool
for statistics and data
science in R”

e Manage a sequence of
computational steps

Iy A kIl

— e only update what needs
/ updating
targets .

ensure that the results at
the end of the pipeline are
still valid

Script-based workflow

1 library(tidyverse)
2 data <- read csv('"data.csv", col types = cols())
3 filter(!is.na(Ozone))

4 write rds(data, "data.rds")

02-model.R

1 library(tidyverse)

2 data <- read rds("data.rds")

3 model <- 1lm(Ozone ~ Temp, data)
4 coefficients()

5 write rds(model, "model.rds")

03-plot.R

1 library(tidyverse)

2 model <- read rds("model.rds")

3 data <- read rds("data.rds")

4 ggplot(data) +

5 geom point(aes(x = Temp, y = Ozone)) +

6 geom abline(intercept = model[1l], slope = model[2])

7 ggsave("plot.png", plot)

Problems with script-lbased workflow

e Reproducibility: if you change something in one script,
you have to remember to re-run the scripts that depend
on it

o Efficiency: that means you'll usually rerun all the scripts
even If they don't depend on the change

e Scalability: if you have a lot of scripts, it's hard to keep
track of which ones depend on which

e File management: you have to keep track of which files
are inputs and which are outputs and where they're
saved

Based on example in https://books.ropensci.org/targets

https://books.ropensci.org/targets

{targets} workflow
R/functions.R

get data <- function(file) {
read csv(file, col types = cols()) %>%

filter(!is.na(Ozone))

fit model <- function(data) ({
lm(Ozone ~ Temp, data) %>%

coefficients()

plot model <- function(model, data) ({
ggplot(data) +

geom point(aes(x

{targets} workflow
_targets.R

library(targets)

tar source()

tar option_set(packages = c("tidyverse"))

list(

tar target(file, "data.csv", format = "file"),
data, get data(file)),
model, fit model(data)),

tar target

1
2
3
4
5
6
7
8
9

(
(
tar target(
(

=
o

tar target(plot, plot model (model, data))

=
=

Run tar_make() to run pipeline

use_targets() will generate a _targets.R script for you to fill in.

{targets} workflow

Targets are “hidden” away where you don't need to
manage them

|— _targets.R
|— data.csv

— R/

| |— functions.R

— _targets/
| — objects
|
|
|

You can of course have multiple files in R/; tar_source() will source them all

7

My typical workflow with {targets}

1. Read in some data and do some cleaning until it's in the form | want to work
with.

2. Wrap that in a function and save the file in R/.

3. Run use_targets() and edit _targets.R accordingly, so that | list the data file as a
target and clean_data as the output of the cleaning function.

4. Run tar_make().
5.Run tar_load(clean_data) so that | can work on the next step of my workflow.

6. Add the next function and corresponding target when I've solidified that step.

| usually include library(targets) in my project .Rprofile so that | can always call

_targets.Rtipsand tricks

list(
tar target(
data file,

1

2

3

4 "data/raw data.csv",
5 format = "file"
6

7

8

) 1
tar target(

raw data,
9 read.csv(data file)
10),
11 tar target(
12 clean data,

13 clean data function(raw data)

| like to pair my functions/targets by name so that the workflow is clear to me

_targets.Rtipsand tricks

preparation <- list(
.7
tar target(
clean data,

clean data function(raw data)

)
modeling <- 1list(
tar target(
linear model,

linear model function(clean data)

) 1

By grouping the targets into lists, | can easily comment out chunks of the pipeline

_targets.Rtipsand tricks

prepare <- list(

tar target(
cleanData.csv,
file.path(path to data,

"cleanData.csv"),

1
2
3
4
5
6
7
8

format = "file"

) 1

tar target(
newdat,

read csv(cleanData.csv,

prepare
cleanData.csv
newdat
fulldat
flow

loglinear
log_dat
log_dat_covid_mild...
log_dat_covid
log_est
log_est_severity

loglinear_spon
log_est_spon
log_est_severity_spon
log_est_ind
log_est_severity_ind
mult_est
mult_est_severity

ctc
ctc_dat
cases
controls

raw
log_res_raw
mult_res_raw
ctc_res_raw
tte_res_raw
tte_res_raw_very
all_res_raw

imputation
mice_params
cols_to_impute
fulldat_imputed
log_dat_imputed
mice_comparison

tabs_figs
descriptive_table
descriptive_table_o...
outcomes_table
risk_plot
tte_plot
followup_tab
testing_plot

all targets

INn big projects, | comment my _targets.R file so that | can use the RStudio outline

Key 1targets} functions

e use_targets() getsyou started with a _targets.R script to fill in
e tar_make() runs the pipeline and saves the results in _targets/objects/
e tar_make_future() runs the pipeline in parallel’

e tar_load() loads the results of a target into the global environment
(e.g., tar_load(clean_data))

e tar_read() reads the results of a target into the global environment
(e.g., dat <- tar_read(clean_data))

e tar_visnetwork() creates a network diagram of the pipeline
e tar_outdated() checks which targets need to be updated
e tar_prune() deletes targets that are no longerin _targets.R

e tar _destroy() deletesthe .targets/ directory if you need to burn everything
down and start again

12

a NA+Ar fdavmat+z~l I vt FA A A Al riliiFAA AA AL IR AA ~FratAA v T i~AAN T A mAr)

Advanced {targets}

“target factories”

tarchetypes

stantargets

jagstargets

tarchetypes makes it easy to add certain kinds of common
tasks to reproducible pipelines. Most of its functions create families of targets

for parameterized R Markdown, simulation studies, and other general-purpose

scenarios.

stantargets is a workflow framework for Bayesian data
analysis with emdstanr. With concise, easy-to-use syntax, it defines versatile

families of targets tailored to Bayesian statistics, from a single MCMC run with

postprocessing to large simulation studies.

Like stantargets, jagstargets is a workflow framework

for Bayesian data analysis, with support for both single MCMC runs and large-
scale simulation studies. It invokes JAGS through the R2jags package, which
has nice features such as the ability to parallelize chains across local R

processes.

15

1tarchetypes}: reports

Render documents that depend on targets loaded with
tar load() or tar read().

e tar render() rendersan R Markdown document

e tar_quarto() renders a Quarto document (or project)

It can’t detect dependencies like tar_load(ends_with("plot"))

16

VWhat does report. gnd look like?

title:

- A{r}
library(targets)
tar load(results)

tar load(plots)

N NN

1
2
3
4
5
6
7
8
9

There were r results$n observations with a mean age of "r result

- A{r}
library(ggplot2)

e
N R O

plots$age plot

NN N

=
w

Because report.gmd depends on results and plots, it will
only be re-rendered If either of those targets change.

1tarchetypes}: branching

Using data from the National Longitudinal Survey of Youth,

_targets.R R/functions.R

library(targets)

model function <- function(outcome var,

library(tarchetypes) sex val, dat) {

tar source()
Im(as.formula(paste(outcome_ var,

targets setup <- list(~ age bir + income + factor(region)"))
data = dat,

subset = sex == sex val)

tar target(
csv,

"data/nlsy.csv",

1
2
3
4
5
)
7
8
9

format = "file"
) s
tar target(
dat,
readr::read csv(csv,

show col types = FALSE)

=
o

coef function <- function(model) {

=
=

coef (model)[["age bir"]]

e e
o U W N

we want to investigate the relationship between age at first birth and hours of
sleep on weekdays and weekends among moms and dads separately

14

18

Option 1

Create (and name) a separate target for each combination
of sleep variable ("sleep wkdy", "sleep wknd") and sex
(male: 1, female: 2):

targets 1 <- list(
tar target(
model 1,

model function(outcome var = "sleep wkdy", sex val = 1, dat =

tar target(
coef 1,

coef function(model 1)

1
2
3
4
5) 1
6
7
8
9

10)

...and so on...

19

Option 2

Use tarchetypes::tar_map() to map over the
combinations for you (static branching):

targets 2 <- tar map(
values = tidyr::crossing(
outcome = c("sleep wkdy", "sleep wknd"),

sex = 1:2

tar target(

model 2,

model function(outcome var = outcome, sex val = sex, dat = dat

1
2
3
4
5) 1
6
7
8
9

) 1
10 tar target(

11 coef 2,
12 coef function(model 2)
13

Option 2, cont.

Use tarchetypes::tar_combine() to combine the results of
a call to tar_map():

combined <- tar combine (
combined coefs 2,
targets 2[["coef 2"]],
command = vctrs::vec c(!!!.x),

)

tar read(combined coefs 2)

command = vctrs::vec_c(!!!.x) Isthe default, but you can
supply your own function to combine the results

21

Option 3

Use the pattern =argument of tar_target() (dynamic branching):

targets 3 <- list(
tar target(
outcome target,
c("sleep wkdy", "sleep wknd")
) 1
tar target(
sex target,
1:2
) 1
tar target(
model 3,
model function(outcome var = outcome target, sex val

pattern = cross(outcome target, sex target)

Branching

Dynamic Static

Pipeline creates new All targets defined in advance.
targets at runtime.

Cryptic target names. Friendly target names.

Scales to hundreds of Does not scale as easily for
branches. tar_visnetwork() etc.

No metaprogramming Familiarity with
required. metaprogramming is helpful.

From https://books.ropensci.org/targets/dynamic.html#branching >

https://books.ropensci.org/targets/dynamic.html#branching

Branching

e The book also has an example of using
metaprogramming to map over different functions

= e fit multiple models with the same arguments
e Static and dynamic branching can be combined

m eg.tar_map(values = ..., tar_target(..., pattern
= map(«..)))

e Branching can lead to slowdowns in the pipeline (see
book for suggestions)

24

1tarchetypes}: repetition

tar_rep() repeats a target multiple times with the same
arguments

targets 4 <- list(
tar rep(
bootstrap coefs,
dat |>

model function(outcome var = "sleep wkdy", sex val
coef function(),

batches =

1
2
3
4
5 dplyr::slice sample(prop = 1, replace = TRUE) |[>
6
7
8
9

reps =
10
11)

The pipeline gets split into batches X reps chunks, each
with its own random seed

1tarchetypes}: mapping over iterations

sensitivity scenarios <- tibble::tibble(
error = c("small", "medium", "large"),

1

2

3 mean = c¢c(1, 2, 3),

4 c(0.5, 0.75, 1)
5

tar_map_rep() repeats a target multiple times with
different arguments

targets 5 <- tar map rep(
sensitivity analysis,
dat |[>
dplyr::mutate(sleep wkdy = sleep wkdy + rnorm(nrow(dat), mean,
model function(outcome var = "sleep wkdy", sex val = 1, dat =
coef function() |[>

data.frame(coef =),

1
2
3
/A
5
6
7
8

values = sensitivity scenarios,

9 batches = 10,
10 reps =

11)

1tarchetypes}: mapping over iterations

1 tar read(sensitivity analysis) |> head()

ldeal for sensitivity analyses that require multiple
iterations of the same pipeline with different parameters

tar read(sensitivity analysis) |>

dplyr::group by(error) |[>

median = median(coef),

1

2

3 dplyr::summarize(g25 = quantile(coef, .25),
4

5

q75 = quantile(coef, .75))

27

Summary

e {targets} Is a great tool for managing complex
workflows

e {tarchetypes} makes it even more powerful

e The user manual Is a great resource for learning more

28

https://books.ropensci.org/targets/

Exercises

We'll clone a repo with {targets} already set up and add
some additional steps to the analysis.

29

